1. Jika f(x) = x² – 5, maka f( x – 2
) = ….
A. x² – 4x – 9 C. x² – 4x – 1 E. x² – 1
B. x² – 4x – 7 D. x² – 9
Jawab:
f( x – 2 ) = ( x – 2 ) 2 - 5
= x 2 - 4x + 4 – 5
= x 2 - 4x – 1
Jawabannya adalah C
A. x² – 4x – 9 C. x² – 4x – 1 E. x² – 1
B. x² – 4x – 7 D. x² – 9
Jawab:
f( x – 2 ) = ( x – 2 ) 2 - 5
= x 2 - 4x + 4 – 5
= x 2 - 4x – 1
Jawabannya adalah C
2. Hasil dari (2 2 − 6)( 2 + 6) =
....
A. 2(1− 2) C. 2( 3 −1) E. 4(2 3 +1)
B. 2(2 − 2) D. 3( 3 −1)
Jawab:
(2 2 − 6)( 2 + 6)= 2 2 2 + 2 2 6 - 6 2 - 6 . 6
= 2 . 2 + 2 6 - 6
= - 2 + 12 = - 2 + 4. 3. = -2 + 2 3.
= 2 3. - 2 = 2 ( 3. - 1)
Jawabannya adalah C
A. 2(1− 2) C. 2( 3 −1) E. 4(2 3 +1)
B. 2(2 − 2) D. 3( 3 −1)
Jawab:
(2 2 − 6)( 2 + 6)= 2 2 2 + 2 2 6 - 6 2 - 6 . 6
= 2 . 2 + 2 6 - 6
= - 2 + 12 = - 2 + 4. 3. = -2 + 2 3.
= 2 3. - 2 = 2 ( 3. - 1)
Jawabannya adalah C
3. Jumlah kamar untuk menginap di suatu hotel adalah
65 buah. Kamar tersebut terdiri atas dua type
yaitu standar dan superior. Jumlah kamar type standar adalah dua kali jumlah type superior dikurangi
10. Banyak kamar type superior adalah
A. 40 C. 30 E. 15
B. 35 D. 25
Jawab:
misal: kamar standar = x
kamar superior = y
x + y = 65 ......(1)
Jumlah kamar type standar adalah dua kali jumlah type superior dikurangi 10 :
y = 2x – 10 .....(2)
substitusi (2) ke (1) :
x + y = 65
x + (2x – 10) = 65
x + 2x – 10 = 65
3x = 65 + 10
3x = 75
x = 25
kamar type superior = y = 2x – 10
= 2.25 – 10 = 50 – 10 = 40
Jawabannya adalah A
yaitu standar dan superior. Jumlah kamar type standar adalah dua kali jumlah type superior dikurangi
10. Banyak kamar type superior adalah
A. 40 C. 30 E. 15
B. 35 D. 25
Jawab:
misal: kamar standar = x
kamar superior = y
x + y = 65 ......(1)
Jumlah kamar type standar adalah dua kali jumlah type superior dikurangi 10 :
y = 2x – 10 .....(2)
substitusi (2) ke (1) :
x + y = 65
x + (2x – 10) = 65
x + 2x – 10 = 65
3x = 65 + 10
3x = 75
x = 25
kamar type superior = y = 2x – 10
= 2.25 – 10 = 50 – 10 = 40
Jawabannya adalah A
4. Grafik fungsi f(x) = x 3 - 3x 2
-9x + 15 turun dalam interval.....
A. x < -3 atau x > 1 C. x < -3 dan x > -1 E. 1< x <3
B. x < -1 atau x > 3 D. -1< x <3
Jawab:
diketahui y = f(x);
- jika f ' (x) < 0 maka f(x) turun
- jika f ' (x) >0 maka f(x) naik
f(x) = x 3 - 3x 2 -9x + 15 turun apabila f ' (x) < 0
f ' (x) = 3x 2 - 6x- 9 < 0 dibagi 3
x 2 - 2x - 3 < 0
(x+1)(x-3) < 0
x = -1 atau x = 3 pembuat no Jawabannya adalah daerah ---- (x<0) yaitu x > -1 dan x < 3, dapat ditulis dengan -1< x < 3
Jawabannya adalah D
A. x < -3 atau x > 1 C. x < -3 dan x > -1 E. 1< x <3
B. x < -1 atau x > 3 D. -1< x <3
Jawab:
diketahui y = f(x);
- jika f ' (x) < 0 maka f(x) turun
- jika f ' (x) >0 maka f(x) naik
f(x) = x 3 - 3x 2 -9x + 15 turun apabila f ' (x) < 0
f ' (x) = 3x 2 - 6x- 9 < 0 dibagi 3
x 2 - 2x - 3 < 0
(x+1)(x-3) < 0
x = -1 atau x = 3 pembuat no Jawabannya adalah daerah ---- (x<0) yaitu x > -1 dan x < 3, dapat ditulis dengan -1< x < 3
Jawabannya adalah D
5. Pak Gimin memiliki modal sebesar
Rp. 60.000,00. Ia kebingungan menentukan jenis
dagangannya. Jika ia membeli 70 barang jenis I dan 50 barang jenis II uangnya sisa Rp.
2.500,00. Sedangkan jika ia membeli 70 barang jenis I dan 60 barang jenis II uangnya kurang
Rp. 2.000,00. Model matematika yang dapat disusun adalah ….
A. 7x + 5y = 5.750 D. 7x + 5y = 6.250
7x + 6y = 6.200 7x + 6y = 5.800
B. 7x + 5y = 6.200 E. 7x + 5y = 5.800
7x + 6y = 5.750 7x + 6y = 6.250
C. 7x + 5y = 6.000
7x + 6y = 5.750
Jawab:
misal:
barang jenis I = x ; barang jenis II = y
maka model matematikanya dapat dibuat sbb:
Jika ia membeli 70 barang jenis I dan 50 barang jenis II uangnya sisa Rp. 2.500,00
70 x + 50 y = 60.000 – 2500
70 x + 50 y = 57500 7x + 5y = 5750
jika ia membeli 70 barang jenis I dan 60 barang jenis II uangnya kurang Rp. 2.000,00
70x + 60y = 60.000 + 2000
70x + 60y = 62.000 7x + 6y = 6200
Jawabannya adalah A
18. Sita, Wati, dan Surti membeli kue di toko “ Nikmat “. Sita membeli 4 kue coklat dan 3 kue
donat dengan harga Rp. 10.900,00. Wati membeli 3 kue coklat dan 2 kue donat dengan harga
Rp. 8.000,00. Jika Surti membeli 5 kue donat dan 2 kue coklat, maka Surti harus membayar
A. Rp. 11.500,00 C. Rp. 12.100,00 E. Rp. 12.700,00
B. Rp. 11.800,00 D. Rp. 12.400,00
Jawab:
Misal kue coklat = x ; kue donat = y
Model matematikanya:
Sita membeli 4 kue coklat dan 3 kue donat dengan harga Rp. 10.900,00
4x + 3y = 10.900 …..(1)
Wati membeli 3 kue coklat dan 2 kue donat dengan harga Rp. 8.000,00
3x + 2y = 8000 ……(2)
Surti membeli 5 kue donat dan 2 kue coklat
5x + 2y =…?
Dari (1) dan (2)
eliminasi x:4x + 3y = 10.900 x 3 ⇒ 12x + 9y = 32700
3x + 2y = 8000 x4 ⇒ 12x + 8y = 32000 -
y = 700
3x + 2y = 8000
3x + 2 . 700 = 8000
3x = 8000 – 1400
3x = 6600
x = 2200
Maka Surti harus membayar:
5x + 2y = 5. 2200 + 2. 700
= 11.000 + 1400
= Rp. 12.400,-
Jawabannya adalah D
dagangannya. Jika ia membeli 70 barang jenis I dan 50 barang jenis II uangnya sisa Rp.
2.500,00. Sedangkan jika ia membeli 70 barang jenis I dan 60 barang jenis II uangnya kurang
Rp. 2.000,00. Model matematika yang dapat disusun adalah ….
A. 7x + 5y = 5.750 D. 7x + 5y = 6.250
7x + 6y = 6.200 7x + 6y = 5.800
B. 7x + 5y = 6.200 E. 7x + 5y = 5.800
7x + 6y = 5.750 7x + 6y = 6.250
C. 7x + 5y = 6.000
7x + 6y = 5.750
Jawab:
misal:
barang jenis I = x ; barang jenis II = y
maka model matematikanya dapat dibuat sbb:
Jika ia membeli 70 barang jenis I dan 50 barang jenis II uangnya sisa Rp. 2.500,00
70 x + 50 y = 60.000 – 2500
70 x + 50 y = 57500 7x + 5y = 5750
jika ia membeli 70 barang jenis I dan 60 barang jenis II uangnya kurang Rp. 2.000,00
70x + 60y = 60.000 + 2000
70x + 60y = 62.000 7x + 6y = 6200
Jawabannya adalah A
18. Sita, Wati, dan Surti membeli kue di toko “ Nikmat “. Sita membeli 4 kue coklat dan 3 kue
donat dengan harga Rp. 10.900,00. Wati membeli 3 kue coklat dan 2 kue donat dengan harga
Rp. 8.000,00. Jika Surti membeli 5 kue donat dan 2 kue coklat, maka Surti harus membayar
A. Rp. 11.500,00 C. Rp. 12.100,00 E. Rp. 12.700,00
B. Rp. 11.800,00 D. Rp. 12.400,00
Jawab:
Misal kue coklat = x ; kue donat = y
Model matematikanya:
Sita membeli 4 kue coklat dan 3 kue donat dengan harga Rp. 10.900,00
4x + 3y = 10.900 …..(1)
Wati membeli 3 kue coklat dan 2 kue donat dengan harga Rp. 8.000,00
3x + 2y = 8000 ……(2)
Surti membeli 5 kue donat dan 2 kue coklat
5x + 2y =…?
Dari (1) dan (2)
eliminasi x:4x + 3y = 10.900 x 3 ⇒ 12x + 9y = 32700
3x + 2y = 8000 x4 ⇒ 12x + 8y = 32000 -
y = 700
3x + 2y = 8000
3x + 2 . 700 = 8000
3x = 8000 – 1400
3x = 6600
x = 2200
Maka Surti harus membayar:
5x + 2y = 5. 2200 + 2. 700
= 11.000 + 1400
= Rp. 12.400,-
Jawabannya adalah D
6. Sita, Wati, dan Surti membeli kue di toko “ Nikmat “. Sita
membeli 4 kue coklat dan 3 kue
donat dengan harga Rp. 10.900,00. Wati membeli 3 kue coklat dan 2 kue donat dengan harga
Rp. 8.000,00. Jika Surti membeli 5 kue donat dan 2 kue coklat, maka Surti harus membayar
A. Rp. 11.500,00 C. Rp. 12.100,00 E. Rp. 12.700,00
B. Rp. 11.800,00 D. Rp. 12.400,00
Jawab:
Misal kue coklat = x ; kue donat = y
Model matematikanya:
Sita membeli 4 kue coklat dan 3 kue donat dengan harga Rp. 10.900,00
4x + 3y = 10.900 …..(1)
Wati membeli 3 kue coklat dan 2 kue donat dengan harga Rp. 8.000,00
3x + 2y = 8000 ……(2)
Surti membeli 5 kue donat dan 2 kue coklat
5x + 2y =…?
Dari (1) dan (2)
eliminasi x:4x + 3y = 10.900 x 3 ⇒ 12x + 9y = 32700
3x + 2y = 8000 x4 ⇒ 12x + 8y = 32000 -
y = 700
3x + 2y = 8000
3x + 2 . 700 = 8000
3x = 8000 – 1400
3x = 6600
x = 2200
Maka Surti harus membayar:
5x + 2y = 5. 2200 + 2. 700
= 11.000 + 1400
= Rp. 12.400,-
Jawabannya adalah D
donat dengan harga Rp. 10.900,00. Wati membeli 3 kue coklat dan 2 kue donat dengan harga
Rp. 8.000,00. Jika Surti membeli 5 kue donat dan 2 kue coklat, maka Surti harus membayar
A. Rp. 11.500,00 C. Rp. 12.100,00 E. Rp. 12.700,00
B. Rp. 11.800,00 D. Rp. 12.400,00
Jawab:
Misal kue coklat = x ; kue donat = y
Model matematikanya:
Sita membeli 4 kue coklat dan 3 kue donat dengan harga Rp. 10.900,00
4x + 3y = 10.900 …..(1)
Wati membeli 3 kue coklat dan 2 kue donat dengan harga Rp. 8.000,00
3x + 2y = 8000 ……(2)
Surti membeli 5 kue donat dan 2 kue coklat
5x + 2y =…?
Dari (1) dan (2)
eliminasi x:4x + 3y = 10.900 x 3 ⇒ 12x + 9y = 32700
3x + 2y = 8000 x4 ⇒ 12x + 8y = 32000 -
y = 700
3x + 2y = 8000
3x + 2 . 700 = 8000
3x = 8000 – 1400
3x = 6600
x = 2200
Maka Surti harus membayar:
5x + 2y = 5. 2200 + 2. 700
= 11.000 + 1400
= Rp. 12.400,-
Jawabannya adalah D
11.
dari bentuk ini yang kita lakukan adalah dengan memisalkan
misal y = 3x - 4
maka
sehingga
Jadi, bentuk integral menjadi
dari bentuk ini yang kita lakukan adalah dengan memisalkan
misal y = 3x - 4
maka
sehingga
Jadi, bentuk integral menjadi
13. f(x) = x2 maka f(x) = (x+ h) 2
sehingga
dengan demikian turunan pertama dari f(x) = x2 adalah f'(x) = 2x
dengan demikian turunan pertama dari f(x) = x2 adalah f'(x) = 2x
14. f(x) = x3 maka f(x) = (x+ h) 3
sehingga
f'(x) = 3x2+0+0 = 3x2
Jadi, jika f(x) = x3 maka f'(x) = 3x2
Dengan demikian kita bisa mengambil kesimpulah bahwa
Jika f(x) = xn maka f'(x) = nxn-1
f'(x) = 3x2+0+0 = 3x2
Jadi, jika f(x) = x3 maka f'(x) = 3x2
Dengan demikian kita bisa mengambil kesimpulah bahwa
Jika f(x) = xn maka f'(x) = nxn-1
15. maka
sehingga :
sehingga :
16. maka
17.
19.
20. Persamaan kuadrat x2 – 5x + 6 = 0 mempunyai akar
– akar x1 dan x2. Persamaan kuadrat yang akar – akarnya x1
– 3 dan x2 – 3 adalah …
A. x2 – 2x = 0
B. x2 – 2x + 30 = 0
C. x2 + x = 0
D. x2 + x – 30 = 0
E. x2 + x + 30 = 0
PEMBAHASAN :
akar – akarnya :
x1 – 3 = y x1 =
y + 3
x2 – 3 = y x2 =
y + 3
substitusi nilai “x1” atau “x2”
kepersamaan kuadrat dalam soal, sehingga menjadi :
x2 – 5x + 6 = 0
PK Baru : (y + 3)2 – 5(y + 3) + 6 = 0
y2 + 6y + 9 – 5y – 15 + 6 = 0
y2 + y = 0
JAWABAN : C
21. Diketahui sebidang tanah berbentuk persegi panjang
luasnya 72 m2. Jika panjangnya tiga kali lebarnya, maka panjang
diagonal bidang tersebut adalah … m.
A.
B.
C.
D.
E.
PEMBAHASAN :
p = 3l
p x l = 72
3l x l = 72
4l2 = 72
l2 = 18
l =
p = 3l = 3. =
Diagonal =
=
=
=
=
=
JAWABAN : A
22. Pak Musa mempunyai kebun berbentuk persegi panjang
dengan luas 192 m2. Selisih panjang dan lebarnya adalah 4 m. Apabila
disekeliling kebun dibuat jalan dengan lebar 2 m, maka luas jalan tersebut
adalah … m2.
A. 96
B. 128
C. 144
D. 156
E. 168
PEMBAHASAN :
p – l = 4
p x l = 192
(4 + l) x l = 192
4l + l2 = 192
l2 + 4l – 192 = 0
(l – 16)(l + 12) = 0
l = 16 atau l = -12 (tidak memenuhi)
p = 4 + l = 4 + 16 = 20
Untuk menentukan luas jalan, kita partisi-partisi menjadi 8
yaitu :
4 luas jalan yang berada di pojok-pojok kebun berbentuk
persegi dengan panjang sisi 2cm : 4 x 22 = 16cm2
2 luas jalan yang berada pada panjang kebun dengan panjang
sisi 12cm dan lebar 2cm : 2 x 12 x 2 = 48cm2
2 luas jalan yang berada pada lebar kebun dengan panjang
sisi 8cm dan lebar 2cm : 2 x 8 x 2 = 32cm2
Jadi luas jalan yang dibangun adalah 16 + 48 + 32 = 96cm2
JAWABAN : A
23. Diketahui akar – akar persamaan kuadrat 2x2 –
4x + 1 = 0 adalah m dan n. Persamaan kuadrat baru yang akar – akarnya dan adalah …
A. x2 – 6x + 1 = 0
B. x2 + 6x + 1 = 0
C. x2 – 3x + 1 = 0
D. x2 + 6x – 1 = 0
E. x2 – 8x – 1 = 0
PEMBAHASAN :
y1 + y2 = +
=
=
=
=
=
= = 6
y1.y2 = .
=
= 1
PK Baru : y2 – (y1 + y2)y +
(y1.y2) = 0
y2
– 6y + 1 = 0
JAWABAN : A
24. Persamaan 2x2 + qx + (q – 1) = 0 mempunyai
akar – akar x1 dan x2. Jika x12 + x22
= 4, maka nilai q = …
A. -6 dan 2
B. -6 dan -2
C. -4 dan 4
D. -3 dan 5
E. -2 dan 6
PEMBAHASAN :
x12 + x22 = 4
(x1 + x2)2 – 2x1x2
= 4
(-b/a)2 – 2(c/a) = 4
(-q/2)2 – 2((q – 1)/2) = 4
q2/4 – q + 1 = 4 (kalikan 4)
q2 – 4q + 4 = 16
q2 – 4q – 12 = 0
(q – 6)(q + 2) = 0
q = 6 atau q = -2
JAWABAN : E
25.Jika
nilai diskriminan persamaan kuadrat 2x2 – 9x + c = 0 adalah 121,
maka c = …
A. -8
B. -5
C. 2
D. 5
E. 8
PEMBAHASAN :
D = 121
b2 – 4ac = 121
(-9)2 – 4(2)(c) = 121
81 – 8c = 121
81 – 121 = 8c
-40 = 8c
-5 = c
JAWABAN : B
26.
Persamaan (1 – m)x2 + (8
– 2m)x + 12 = 0 mempunyai akar kembar, maka nilai m =
A. -2
B. -3/2
C. 0
D. 3/2
E. 2
PEMBAHASAN :
Akar kembar jika D = 0
b2 – 4ac = 0
(8 – 2m)2 – 4(1 – m)(12) = 0
64 – 32m + 4m2 – 48 + 48m = 0
4m2 + 16m + 16 = 0
4(m2 – 4m + 4) = 0
(m – 2)(m – 2) = 0
m1,2 = 2
JAWABAN : E
27.
Jika x1 dan x2
adalah akar – akar persamaan kuadrat x2 + px + 1 = 0, maka persamaan
kuadrat yang akar – akarnya dan x1 + x2 adalah …
A. x2 – 2p2x + 3p = 0
B. x2 + 2px + 3p2 = 0
C. x2 + 3px + 2p2 = 0
D. x2 – 3px + 2p2 = 0
E. x2 + p2x + p = 0
PEMBAHASAN :
misal :
y1 =
y2 = x1 + x2
y1 + y2 = ()
+ (x1 + x2)
= ()
+ (x1 + x2)
= () +
(-b/a)
= + (-b/a)
= + (-p/1)
= -3p
y1.y2 = ().(x1
+ x2)
= ()
+ (x1 + x2)
= ().(-b/a)
= .(-b/a)
= .(-p/1)
= 2p2
PK Baru : y2 + (y1 + y2)y +
(y1.y2) = 0
y2
+ (-3p)y + (2p2) = 0
y2
– 3py + 2p2 = 0
JAWABAN : D
28.
Suatu fungsi kuadrat mempunyai nilai
minimum –2 untuk x = 3 dan untuk x = 0 nilai fungsi 16. Fungsi kuadrat itu
adalah …
A. f(x) = 2x2 – 12x + 16
B. f(x) = x2 + 6x + 8
C. f(x) = 2x2 – 12x – 16
D. f(x) = 2x2 + 12x + 16
E. f(x) = x2 – 6x + 8
PEMBAHASAN :
misal : f(x) = ax2 + bx + c
substitusi x = 0 untuk nilai fungsi 16, sehingga :
f(0) = a(0)2 + b(0) + c
16 = c … (i)
Substitusi x = 3 untuk nilai minimum -2, sehingga :
f(3) = a(3)2 + b(3) + c
-2 = 9a + 3b + c … (ii)
f’(x) = 2ax + b
substitusi titik x = 3 (titik minimum) untuk f’(x) = 0,
sehingga :
0 = 2a(3) + b
b = -6a … (iii)
substitusi (i) dan (iii) ke (ii), sehingga diperoleh :
-2 = 9a + 3b + c
-2 = 9a + 3(-6a) + 16
-2 = 9a – 18a + 16
-18 = -9a
2 = a
b = -12
f(x) = ax2 + bx + c
substitusi a = 2 , b = -12 dan c = 16
f(x) = 2x2 – 12x + 16
JAWABAN : A
29. Nilai maksimum dari fungsi f(x) = –2x2 + (k+5)x +
1 – 2k adalah 5. Nilai k yang positif adalah …
A. 5
B. 6
C. 7
D. 8
E. 9
PEMBAHASAN :
f(x) = –2x2 + (k + 5)x + 1 – 2k
f’(x) = -4x + k + 5 = 0
-4x = -(k + 5)
x = (k + 5)/4
substitusi nilai “x” ke fungsi :
f(x) = –2x2 + (k+5)x + 1 – 2k
5 = –2()2
+ (k+5)() + 1 – 2k
5 = –2()
+ 4()
+
5.16 = -2k2 – 20k – 50 + 4k2 + 40k +
100 + 16 – 32k
80 = 2k2 – 12k + 66
2k2 – 12k – 14 = 0
2(k2 – 6k – 7) = 0
2(k – 7)(k + 1) = 0
k = 7 atau k = -1
JAWABAN : C
30. Absis titk balik grafik fungsi f(x) = px2 + ( p –
3 )x + 2 adalah p. Nilai p = …
A. -3
B. -3/2
C. -1
D. 2/3
E. 3
PEMBAHASAN :
Titik balik = titik minimum.
f(x) = px2 + ( p – 3 )x + 2
f’(x) = 2px + p – 3 = 0
substitusi x = p, sehingga diperoleh :
2p2 + p – 3 = 0
(2p + 3)(p – 1) = 0
p = -3/2 atau p = 1
JAWABAN : B
31.
Tentukan
nilai yang memenuhi persamaan
kuadrat berikut:
Jawab:
atau
Jawab:
atau
33
. Jika f(x) = x – 2, maka f(2x) + 2f(x) adalah ….a. 4x – 8b. 4x – 6c. 3x – 6d.
3x – 8 e. -6
Jawaban : B
Jawaban : B
34.. Fungsi f(x) = [(x2 – 2x + 1) / (16 – x2)]1/2 terdefinisi untuk x adalah ….
a. -1 < x < 4
b. -1 < x < 1
c. -4 < x < 4
d. x < -1 atau x > 1
e. x < -4 atau x > 4
Jawaban : E
35.. Diketahui fungsi f(x) dan g(x) didefinisikan f(x) = {(1,3),(2,2),(4,3)} dan g(x) = {(1,3),(2,3),(4,1)} hasil dari f + g adalah ….
a. {(3,3),(2,5),(4,4)}
b. {(3,3),(4,5)}
c. {(1,6),(2,5),(4,4)}
d. {(1,6), (2,5),(4,1)}
e. {(2,6),(2,5),(4,4)}
Jawaban : C
36. Diketahui fungsi f(x) = { (4 – x2) , x<0; (2x + 3) , 0< x <2; 5 , x >2 }. Nilai f(-3) + f(1) + f(3) adalah ….
a. -15
b. -10
c. -5
d. 0
e. 5
Jawaban : E
37. Diketahui g(x) = x – 4 dan (fog)(x) = x2 – 3x + 2, maka nilai f(0) sama dengan ….
a. 20
b. 16
c. 15
d. 8
e. 6
Jawaban : E
38. Jika f(x) = x + 1 dan (fog)(x) = 3x2 + 4, maka g(x) adalah ….
a. 15
b. 16
c. 57
d. 52
e. 51
Jawaban : E
39.. Jika f(x) = 3x + 4 dan g(x) = 6 -2x, maka nilai dari (fog)(2) adalah ….
a. 12
b. 10
c. 8
d. -10
e. -12
Jawaban : B
40. Jika diketahui f(x) = x2 + 2x + 1 dan g(x) = x – 1, serta (fgg)(x) = 4, maka nilai x yang memenuhi adalah ….
a. 8
b. 4
c. -4
d. 4 dan -4
e. 2 dan -2
Jawaban : E
41. Fungsi invers dari f(x) = (3x + 7) / (2x – 5) adalah ….
a. f-1(x) = (2x – 3) / (2x – 5)
b. f-1(x) = (5x + 7) / (2x – 3)
c. f-1(x) = (x – 5) / (3x + 7)
d. f-1(x) = (2x – 3) / (2x + 5)
e. f-1(x) = (3x – 3) / (2x – 5)
Jawaban : B
42. Fungsi berikut yang tidak mempunyai fungsi invers adalah ….
a. y = 2x + 1
b. 3x – 2y = 5
c. y = 2x2 + 3x + 1
d. y = 3log x, x >0
e. y = 3x
Jawaban : C
43. Agar fungsi f(x) = x2– 6x + 8 mempunyai fungsi invers, maka daerah asalnya adalah ….a. {x | x ∊ R}b. {x | x ≠ 0, x ∊ R}c. {x | x ≠ 2, x ∊ R}d. {x | x > 3, x ∊ R} e. {x | x ≠ 4, x ∊ R}
Jawaban : D
44. Diantara fungsi dibawah ini yang inversnya juga merupakan fungsi adalah ….
a. f(x) = sin x, 0 < x < ½ π
b. f(x) = cos x, 0 < x < ½ π
c. f(x) = |x|
d. f(x) = x2 + 2x
e. f(x) = tan x, 0 < x < π
Jawaban : B
45. Diketahui f(2x – 3) = 5x + 1. Maka nilai f-1 (-4) adalah ….
a. -19
b. -11
c. -5
d. -3
e. 1
Jawaban : C
46. Diketahui f(x + 4) = (2x – 9) / (x + 1), rumus untuk f-1(x) adalah ….
a. (3x – 17) / (x – 2), x ≠ 2
b. (2x + 17) / (x – 2), x ≠ 3
c. (x + 2) / (3x – 1), x ≠ 1/2
d. (x – 2) / (2x + 1), x ≠ – ½
e. (x – 3) / (2x + 1), x ≠ -5/2
Jawaban : A
47. Jika (fog)(x) = 4x2 + 8x – 3 dan g(x) = 2x +4, maka f-1(x) adalah ….
a. x + 9
b. 2 + √x
c. x2 – 4x – 3
d. 2 + √(x+1)
e. 2 + √(x + 7)
Jawaban : B
48. Jika fungsi f(x) = g(x).h(x) dengan f(x) = 6x2 – 7x – 3 dan g(x) = 2x – 3, maka h(x) adalah ….
a. 3x + 1
b. 3x – 1
c. 1 – 3x
d. 2x + 3
e. 3 – 2x
Jawaban : A
49. Jika f(x) = 2x + 1, g(x) = 5x2 + 3 dan h(x) = 7x, maka (fogoh) adalah ….
a. 490x2 + 7
b. 490x3 + 7
c. 70x2 + 3
d. 70x2 + 7
e. 490x2
Jawaban : A
50. Jika fungsi (fog)(x) = 38 – 15x dan g(x) = 8 – 3x, maka fungsi f(x) adalah ….
a. 5x + 2
b. 5x – 2
c. 2 – 5x
d. 2x – 5
e. 2x + 5
Jawaban : B
51. Jika f(x) = 5x + 2 dan (fog)(0) = 32 – 20x, maka nilai g-1(x) adalah ….
a. 4x – 6
b. 4 – 6x
c. 4 + 6x
d. 6 – 4x
e. 6 + 4x
Jawaban : D
52. Jika fungsi f(x) = 4x + 5 dan g(x) = (2x – 3) / (4x + 7) maka nilai dari (gof)-1(1) adalah …. a. -20/8
b. -18/24
c. -16/24
d. -9/24
e. 16/24
Jawaban : A
Tidak ada komentar:
Posting Komentar